
predicting co-translational pausing with neural networks
bioc218 ånal project | winter 2013 | biafra ahanonu*

abstract
Neurodegenerative diseases are uniåed by the problem of protein misfolding and upset of
proteostasis leading to neuronal death. Co-translational folding may play a role in proteosta-
sis and codon optimality is a likely mechanism used to control folding rates. We give an
overview of neural networks and their current implementation then propose a pipeline to use
them in analyzing domain pausing in S. cer as a årst step to see what mechanisms have
evolved to counter misfolding in addition to the chaperone network. ROC analysis of the
resulting neural network appears to indicate its validity, but the results are heavily skewed
toward predicting non-pausing sites. Neural networks should be a valid method of analyz-
ing the complex relationship between domain pausing and protein properties, but further
reånement of the method proposed here is needed before a deånitive conclusion can be
made.

introduction
Huntington's, Parkinson's, Alzheimer's, Frontotemporal dementia (FTD), and many other neu-
rodegenerative diseases have a common thread: protein misfolding and neuronal death.39
Currently several proteins are implicated in each disease: huntingtin47, α-synuclein31, A24,
and TDP-4326, respectively. Some of these proteins are known to have cellular functions, such
as huntingtin's role in vesicular axonal transport.45 Further, they form inclusions that appear to
recruit both protein quality control machinery and other proteins (Ron Kopito, personal com-
munication, 2013). This might implicate them in upsetting proteostasis and thus leading to
a generalized increase in misfolded proteins in the cell. Studying the mechanisms of protein
folding might provide insight as to how the cell compensates for toxic species and possible
routes of intervention to slow the progress of these diseases.

Folding can occur at various times throughout a protein's life: co-translational, re-folding,
post-translational, and others. Each can be mediated by various chaperones--such as SSB,
Hsp90, and TRIC, respectively. Of particular interest is co-translational folding6 and how the
cell might use both the nucleotide sequence, tRNA pool, and other properties to dynamically
control folding as a protein forms. One idea is that downstream of each domain are non-
optimal codons (due to low cognate tRNA levels or other factors) that cause the ribosome
to pausing and allowing time for the domain to fold or interact with a chaperone.28 In this
way, the same amino acid sequence can have a different folding landscape depending on
codon composition. Synonymous codon mutations have been shown to affect protein function
and stability.17,46 Further, it has also been seen that synonymous codons might not be åtness
neutral and could be slightly selected against.3,5,7,43 Lastly, ribosome proåling and other
methods should provide a way to verify whether the ribosome is indeed pausing at these sites
for any speciåc amount of time.14,15

Dept. of Biology, Stanford University, Stanford, California
Correspondence: bahanonu@stanford.edu

domain pausing and neural networks | bioc218 ånal project| biafra ahanonu | 1

To help generate solid hypothesis and complement growing experimental evidence, we pro-
pose to use neural networks to validate predictions made based on analysis of translational
efåciencies of domains in the S. cer genome. This should allow us to use subsets of domains
predicted to use pausing and see if by using known biochemical (hydrophobicity, secondary
structure, disorder, etc.) and cellular (expression levels, heat-shock response, etc.) properties
we can predict the other subset. This would give us insight as to what pausing is used for
and how it might be regulated. Further, we can then use this to generate hypothesis about
whether neurons are able to alter tRNA pools, quality control machinery, or other factors to
compensate for increased load caused by the toxic species mentioned above.

history
Before diving into the proposed approach, we will give an overview of neural networks,
both their history and implementation. Neural networks have a fairly long history--marked by
both popularity and abandonment--stretching back to the early days of computing.2,19,33 In
1943, Warren McCulloch and Walter Pitts published a bulletin outlining a neural network
that could be used to describe all arithmetic functions and show applications of this ånding
in 1947.23,30 Donald Hebb formulated the Hebbian rule--neurons that åre together, wire
together--that would help form the basis for addition of learning algorithms to train the weights
of a neural network.10 This idea was extended to weights that were incorporated into several
machines of the era, most notably the Mark I perceptron created by Frank Rosenblatt, Charles
Wightman and others at MIT in the late 1950s.9 The perceptron was described in detail
by Rosenblatt (Figure 2) and was an early precursor to current implementations of neural
networks.36

At the same time, over at Stanford, Marcian Hoff and Bernard Widrow were developing
ADALINE, which would later evolve into MADALINE, a commercial system to help reduce
noise in telephone systems.20 In a classic example of good engineering, much like Bell Lab's
ESS No. 1A Processor.35 The ADALINE system was slightly different than that proposed by
McCulloch and Pitts, namely the learning algorithm involved a weighted sum of the inputs to
a net (Equation 2, also has error function used) instead of the activation/transfer functions
output being used to update the network. In addition, they introduced gradient descent or the
delta rule to converge on a local minima for the weight vector (basically want δE

δw
= 0 where

E and w are the error and weights respectively). The novel idea, and why it improved on the
perceptron, was that the weights could change in steps that corresponded in magnitude to the
error (e.g. ∆w ∼ |E|) The output function was just a summed weight of the input (Equation 1)
and is thus a linear system compared to later non-linear designs.

y =
n∑

j=1

xjwj + θ (1)
w ← w+η(d−o)∗x, E = (d−o)2, note (2)

Then, in 1969, Marvin Minsky and Seymour Papert showed several ýaws in the perceptron
that implied the åeld itself was fundamentally ýawed, no matter how much neural networks
improved in complexity and organization.25 This, along with the rise of artiåcial intelligence

w = weight, y = output, θ = constant, n = number inputs, x = input
d = desired output, o = actual output, ν = learning rate

domain pausing and neural networks | bioc218 ånal project| biafra ahanonu | 2

and a general adoption or von Neumann computing (with its focus on serial over distributed,
parallel processing), lead to a reduction in research in the åeld through the 1970s and early
1980s. There were other issues, including use of a ýawed error function and prevalence of
single-layered networks.

These problems were corrected in the early 1970s and new layers of sophistication added.
Teuvo Kohnen and James Anderson independently developed the linear associator (Figure 4),
an feedforward extension of both ADALINE and the perceptron.1,18 A year later Chris Mals-
burg proposed a non-linear model, both more biologically accurate in terms of response of
voltage gated sodium channels and other receptors while introducing the idea that would
come to encompass the non-linear functions (hyperbolic tangent, logistic function, etc.) used
in later models.22 This also would make networks without inhibitor networks stable. Then in
1974 Paul Werbos proposed the idea of error backpropagation, which is the basis for most
neural network learning algorithms used today.41 Additionally, the use of neural networks
for clustering as give a boost by the invention of adaptive resonance theory (ART) for neural
networks by Stephen Grossberg and Gail Carpenter.

Several years later, John Hopåeld introduced Hopåeld networks that would help explain
how a memory could be stored and retrieved a memory using recurrent neural networks,
e.g. activation of only a (relevant) subset would cause the network to converge to a speciåc
minima, e.g. an attractor pattern.13 Several years later, a team--consisting of Rumelhart,
Hintont, Williams--published an article in Nature detailing the backpropagation of error
(Figure 6) that would come to be used in many later models.37 This also helped extend the
delta rule of Widrow and Hoff to neural networks with multiple layers, but also increased the
computation time needed to train the network.

The åeld has settled down since then and implemented several algorithms to deal with un-
supervised learning. For example, deep learning has been applied to neural networks and
consist of creating several hidden layers that begin by learning salient, general features of
the input followed by successive layers that narrow the focus.12 This latter technique begins
to solve one of the problems of neural networks: they can be over-trained and tend to need
many examples.

hierarchical neural networks
An aside: though this is not implemented to discussed in great detail in this paper, it would
be interesting to build a hierarchy of neural networks to allow more detailed processing.
For example, suppose you needed to train a robot to navigate an environment. In the most
general sense, the robot needs to know if it should turn left/right or go forward/back. Once
these are known, the problem becomes more speciåc, e.g. should it make a slight right, does
it need to make a right that involves movement around an obstacle of size n∗n∗n, or a variety
of other sub-problems. Thus, a possible extension of neural networks would be to have an
initial coarse-grained classiåer network that decided what general type the input was then
relayed that to more speciåc networks to deal with (example of model in Figure 7).

An example of this in the brain would be your response to a snake-like object on a trail: visual
information is coarsely classiåed initially and the snake-like object is classiåed as a thread and
information from the LGN is sent to the amygdala to induce a reýexive backing away. The

domain pausing and neural networks | bioc218 ånal project| biafra ahanonu | 3

input is also send to be further classiåed by the visual cortex and downstream dorsal/ventral
pathways to decide whether the threat is a snake speciåcally or just a rope.

My proposed system, a hierarchical neural networks, would mimic this somewhat and might
provide a way to combine very generalizable neural networks with nearly overtrained net-
works to help better classify objects. See pseudo-code block at end of paper for example
implementation of this method in the R statistical language (Code 1)--error handling and back-
ground of creation of some parts of the neural networks are left out for sake of clarity. A similar
method (Figure 9) has bee implemented to predict β-turns in a sequence.29

classic neural networks
Construction of a neural network follows several stages: choosing input nodes, specifying
network topology and weights, deciding on the various functions used to transform neuronal
input to output, and making a set of output nodes that contain classiåcations. In addition, the
learning algorithm used to train the algorithm needs to be chosen. We will look at each step
sequentially--along the way describing the mathematics and how it åts into the entire model.
First we will outline the multilayered perceptron (Figure 8)then brieýy go over radial basis
function networks.

In general, you want the number of input nodes to exceed the number of neurons in the
hidden layer by some multiplier to avoid immediate overåtting of the data (åtting n inputs to
m parameters given m≫ n will guarantee a network which exactly models each datapoint).
Akaike information criterion can be used can be used to discourage overåtting.27 In general,
inputs should be determined årst based on the type of problem.33

Next comes determination of the parameters that deåne each neuron in the hidden layer
(Figure 10). The hidden layer is where weights are adjusted to help determine a matrix
of weights, W, that satisåes a particular minimization procedure, which involves presenting
input with a known, target output (in the case of supervised learning). There are three basic
properties of a hidden layer neuron: propagation, activation, and output.

A propagation function is how the inputs to a neuron are combined and fed to the activation
function. Normally propagation functions are just weighted summations of the input from the
previous layer i to current layer j. In this case we have yi inputs from the previous layer
multiplied by wi,j weights to get the aj activation of this neuron (see Figure 10):

aj =
I∑

i=0

yi ∗ wi,j (3)

The output of the propagation function feeds into an activation function which determines how
the neuron will respond to its inputs. Various types of activation functions have been used
and, as mentioned previously, the most powerful are the non-linear ones. The most common
are the logistic function and hyperbolic tangent, as seen in Equation 4 and Equation 5.40 The
advantage of these over a step function or other non-differentiable (over the entire function)
functions is that it allows the network to have more ýexibility.

domain pausing and neural networks | bioc218 ånal project| biafra ahanonu | 4

g(aj) =
1

1 + e−aj
(4) g(aj) =

1− e−2aj

1 + e−2aj
(5)

Once the activation function has been chosen, the output function needs to be set. Normally
the output function is chosen to be the identity function (Equation 6). This allows the activation
of the neuron to just represent the output and reduces complexity. While this might not be
biologically precise (start of action potential propagation at the axon hillock depends on a
variety of other factors besides just the input at dendrites and depolarization of the soma), it
still allows us to model nearly any function and thus ånd one that captures the trend of the
input data.

fout(g(aj)) = yj = g(aj) (6)

Once a network architecture, neuronal model, and weights have been speciåed, we need
to train the network. This can be done in a variety of ways, but the most common is to take
advantage of least square minimization of difference between expected and actual outcomes
by altering the weights of the network, encapsulated in the idea of backpropagation. A
simple error function to minimize can be:

E =
1

2

n∑
q=1

K∑
k=1

[yk(x
q, w)− tqk]

2 (7)

Where y is some output over q different output patterns and k inputs (samples, with K being
the last one) compared to a t target vector. The idea is to sum the errors between the output of
all samples against the expected output for each classiåer. For example, if we have an output
vector with possible classiåcations of y⃗1 = {tree, cat, dog, human}, then we would expect
if we give it an image of a cat, the output would look like y⃗1 = {.02, .82, .10, .06} with the
target vector being y⃗1 = {0, 1, 0, 0} leading to a E1 = 0.0464. The same procedure would
be repeated over all samples. With this in mind, we can derive error backpropagation2

by

ej = g(aj)
K∑
k=1

wk,jek (8)

Where g(a) is some activation function, wk,j are weights from neuron j to output k, and e is
the error signal at a given node. Thus, we see a backpropagation of the error signal, error
signals at the output affect the error signal in the layer. This continues until you reach the input
layer. With this in mind, we can then use the gradient descent method mentioned previously
to update each weight according to a learning rate η.

∆wτ
j,i = −η

δE

δwi,j

∣∣∣∣
wτ

(9)

domain pausing and neural networks | bioc218 ånal project| biafra ahanonu | 5

This basically tells us that we change weight wi,j (ith input to j neuron) at time-step τ based on
some constant (or as we'll see variable) learning rate η. Optimizing what value η should take
is crucial and values that are too high might lead to instability due to the weight adjustments
being too large and continually missing the true minima or hopping to a different valley in
the error space. There are extensions of that general formula that take into account various
problems that arise when searching the error space, such as when the curvature between the
error space of one pattern is steeper compared to others.

The neural network we just outlined is considered a multilayered perceptron, there are other
neural network methods of capturing the trends in data. The radial basis function networks
take advantage of the mathematics involved in exact interpolation of data and apply it to
neural networks. The idea with radial basis functions is that we can use a Gaussian or other
mean-centered distribution ϕi (Equation 11 & Figure 8) for each input from the input layer and
then sum these distributions to get a curve that exactly matches our data (Equation 10).

yj(x) =
n∑

i=0

wi,jϕ(x)i (10) ϕ(x)i = exp(−x− µi
2

2ω2
i

) (11)

To help determine the parameters, maximum likelihood or K-means have been used.2 With
K-means our goal is to ånd a set of radial basis functions that are centered on the mean of a
cluster of input patterns. Although radial basis functions are another method of constructing
neural networks, we will focus on derivatives of the multi-layered perceptron.

current implementations
Several groups have extended the classic neural network paradigm outlined above to various
experiments. Application of neural network to predicting secondary structure has been done
many times.32 For example, Punta and Rost provide a fairly detailed guide on how to both
use sparse encoding to represent amino acid sequences to be input into a network as well as
providing advice on picking the correct performance parameter (e.g. ROC vs. Q measures).
They also identify (as we will show) that population biases can reduce how generalizable a
network is as well as making the performance parameter appear like the network is performing
better than it actually is.33

Neural networks have also been used to detect a other protein properties. For example, in
higher vertebrates, MHCI class receptors present antigen fragments to allow the immune sys-
tem to detect if a cell has been infected. The antigen itself needs to be cleaved and determin-
ing where these cleavages by the proteasome occur could be informative. Neural networks
were used to classify proteasome cleavage motifs between in vitro and in vivo experimental
results.16 The network performed well and they further showed that neural networks could
help show if there was an underlying difference between two different experimental datasets
of the same system. Of note, they used the coefåcient of correlation to evaluate network
performance and used experimental evidence to evaluate network performance.

Px is the number of true positives (experimentally veriåed cleavage sites which are also predicted as cleavage
sites), Nx the number of true negatives (experimentally veriåed non-cleavage sites, predicted as non-cleavage
sites), Pfx the number of false positives (experimentally veriåed non-cleavage sites, predicted as cleavage sites)
and Nfx the number of false negatives (experimentally veriåed cleavage sites, predicted as non-cleavage sites)

domain pausing and neural networks | bioc218 ånal project| biafra ahanonu | 6

C =
PxNx −NfxPfx√

(Nx +Nfx)(Nx + Px)(Px +Nfx)(Px + Pfx)
(12)

Besides these papers and many others, a variety of more general tools have been developed
to analyze different aspects of protein sequence structure, function, and other properties using
neural networks. Of particular interest is the Center for Biological Sequence Analysis at the
Technical University of Denmark. They have many servers for classiåcation of proteasome
cleavage sites, transmembrane helices, solvent accessibility, and others. For example, they
have NetMHC to help predict binding of epitopes to MHC class 1 receptors.21 That paper
also provides a method to input short sequences into our neural net using sparse encoding,
similar to the method discussed by Punta and Rost.

A recent paper34 looks to extend neural networks to analyze multiple protein properties at the
same time (Figure 12). By training the network to recognize the different properties jointly,
they are able to obtain more accurate results with the prediction. This is likely due to the in-
terdependencies of different properties, such as secondary structure and solvent accessibility,
that allows the model to create a more robust picture of a protein and therefore allow for
better classiåcation.

neural networks and domain pausing
As mentioned at the outset, we are attempting to develop a neural network that can help
predict and validate sites of domain pausing, speciåcally in S. cer. This will allow us to deter-
mine whether there is some higher-dimensional relationship between the domains identiåed
to use pausing. While principal component analysis (PCA), K-means, and other clustering
algorithms can tell us if they cluster in higher-dimensional space, they are not necessarily pre-
dictive and in the case of PCA, if the årst two or three components don't capture the majority
of the variance, it is hard to interpret anything from the clusters observed. On the other hand,
we hope to use a high-quality, small dataset of domains with pausing to possible predict
others that might use pausing, but for which our current method is unable to identify.

Our current implementation combines a whole genome analysis stage to extract sites we
believe are using signiåcant pausing (Figure 1) with a neural network stage. This allows us to
use a supervised learning method, we can give the network domains we think are true targets
and train it on those. A problem with this approach, and most of supervised neural network
approaches, is that they require the targets to be valid. If there is a degree of uncertainty,
this is not directly modeled in the learning algorithm. I would thus propose an extension
(Equation 13) to the current error analysis functions used, in which a conådence vector sk for
each k input is multiplied by the error to help the network give larger weight to higher quality
data.

E =
1

2

n∑
q=1

K∑
k=1

sk[yk(x
q, w)− tqk]

2 (13)

This is of particular importance given the variable quality in various databases whether it be

domain pausing and neural networks | bioc218 ånal project| biafra ahanonu | 7

http://cbs.dtu.dk/services/
http://www.cbs.dtu.dk/services/NetMHC/

PDB structures, secondary structure annotation of particular proteins (especially those with
many regions predicted to have disorder), differences in kinetic measurements (half-life, etc.)
that bias results toward certain classes of proteins, and other difåculties. The conådence vector
would be pre-computed based on either metrics from the source data identifying quality or a
new metric would have to be devised.

With this out of the way, we propose the following pipeline for analyzing domain pausing
with neural networks. First, the translation efåciency of a variable length window (between
4-7 residues) around 45 residues downstream of the end of identiåed domains (from SCOP
classiåcations) will be given as part of the input pattern. In addition, the size of the window
(our procedure ånds a windows length between 4-7 residues with the highest composition of
non-optimal codons); the average translational efåciency of the codons in the window; the
length of the domain (longer domains might need more pausing to help facilitate folding);
the domain hydrophobicity and disorder; translational efåciency of the domain; what type of
function it has in protein interaction networks (hub, bottleneck, etc., this can be determined
by graph analysis of BioGRID or other databases and is illustrated in Figure 11); and half-
life, transcriptional frequency, and mRNA expression levels of the protein will be fed into
the neural network. These parameters should initially help capture the various biochemical
properties of the domain along with cellular features. Cellular localization of the protein is
available (via Gene Ontology and other databases), but we will perform the analysis initially
by segmenting the proteins into groups based on localization, e.g. ER, mitocondrial, nuclear
and cytoplasmic proteins will all be separately analyzed.

The initial dataset will then be sent to a cleaning routine to remove proteins with NaNs at any
data-points (these cause problems and setting them to zero or the mean will still affects results
unlike in PCA analysis). In addition, we will identify homologs (using ProDom, PSI-BLAST, or
other methods) and give each family a unique ID to enable random åltering later on. This
is done to prevent training a neural network that just predicts protein families rather than
domain pausing. As this is a separate sub-routine, we can add other cleaning functions later
if needed.

The cleaned dataset is returned to the main function and then a random subset of the ho-
mologs is chosen to be used in the creation of the neural network. Those not chosen are
retained for use in the validation set after cross-training and other procedures are ånished.
This will allow us to present our network with sequences that are similar, but for which it
has had no previous exposure. Next we send the dataset to a bias removal routine. This
crawl through SCOP superfamilies to identify if our dataset is biased toward helical, strand,
WD40 or other proteins and initially attempt to ýatten this bias by picking random subsets
from over-represented families equal in size to the smaller families. We wanted to remove
secondary structure and disorder biases, but as these would likely be important parameters
in determining domain pausing, this has been removed from the ånal proposal.

Lastly, we will choose a subset of domains without pausing equal to the size of the domains
with pausing. Initial analysis shows that we only identiåed 1079 domains with pausing com-
pared to 8932 domains analyzed, or just 12% of domains contain pausing. Neural networks
are inýuenced by the magnitude of inputs given, e.g. if we give it 8x more no-pausing do-
mains, it will become a no-pausing domain predictor rather than a classiåer of domain paus-

domain pausing and neural networks | bioc218 ånal project| biafra ahanonu | 8

http://scop.berkeley.edu/
http://thebiogrid.org/
http://www.geneontology.org/
http://prodom.prabi.fr/prodom/current/html/home.php

ing. Thus, the bias routine will also choose a random subset of no-pausing domains equal to
the number of pausing domains, keeping the neural network more generalizable.

After the dataset has been removed of biases and made sequence unique (remove homologs),
it is split into N sets. Each set will function as a training set and a cross-training set. A neural
net will be trained with each n set and then the patterns from cross-training (consisting of
domain and protein properties) will be run through the trained network and the classiåcations
compared to the actual classiåcations. Because the output of the neural network are proba-
bilities of being in a particular class, we can use various thresholds from 0 to 1 and create
a ROC curve of the true-positive rate vs. false-positive rate to give us an idea of how the
network is performing. This will be done over all training sets.

An additional advantage of this procedure is that we can identify input patterns that actual
inýuence the weights. For example, the neuralnets package allows us to view the general-
ized weights from the neural net and observe whether they differ from zero for each input
parameter given.8 This is likely a useful method of determining what properties don't seem to
have a inýuence in grouping pausing and non-pausing domains and thus those that can be
thrown out to reduce the input noise to the network.

After training of the network, the validation set can be compared to the network to determine
how generalizable it is. While it may seem that we have covered the entire genome with
our analysis, the main thrust behind this proposed analysis is to identify whether we can get
a good, generalizable classiåer for proteins with unannotated domains. We have 15121
domains in our current database, of these only 8932 are usable for extraction of domain
pausing and only 1079 actually have pausing, or about 7% of annotated domains. As there
are likely many more domains in the yeast genome and this may be a general mechanism
used across species, obtaining a good neural network will allow us to get a årst pass esti-
mate of which proteins might be using pausing and we can investigate those in more detail
experimentally. After mutation experiments like those done with actin have been performed
with other proteins, we can then also increase the number of classiåcations, from just pausing
and no-pausing to pausing with/without folding, function, cellular, and other effects post-
synonymous codon mutation. This will allow a higher level of analysis that can guide future
experiments.

Draft code and implementation were performed in R. Our neural network (Figure 14) appears
at årst glance to be very good as the ROC curve almost has an area of 1 (Figure 13). But
further inspection shows that this is mostly due to correct identiåcation of non-pausing domains
but misclassiåcation of many pausing domains. However, this initial run doesn't completely
remove the pausing/non-pausing bias. Thus, we are seeing an example of the number of
samples in each class biasing analysis. Further tests need to be done showing (code in
progress but ånal results not shown in this paper).

A modiåcation of this procedure would be to input the entire sequences translational efåciency
proåle along with other properties and see if the neural network ånd an input pattern. This
would be unsupervised learning. This is not discussed further, but is something to keep
in mind should the supervised learning prove difåcult. It might allow us to identify pausing
domains in the entire sequence that our other analysis doesn't address should the proposed

domain pausing and neural networks | bioc218 ånal project| biafra ahanonu | 9

http://cran.r-project.org/web/packages/neuralnet/index.html

method fail to produce accurate networks.

extracting biochemical parameters
Once our algorithm has picked a set of domains that are most representative of the entire
dataset (i.e. that subset has the highest ROC area), we need to extract some biological
information from it. We propose several methods of doing this. Given we have the biolog-
ical parameters, we can use principal component analysis to cluster domains that produce
networks that accurately segment the data and thus represent those that contain the most in-
formation in terms of generalized properties needed to evolve domain pausing. From this,
we can inspect disorder, hydrophobicity, secondary structure, and other variables that are
likely to be involved. K-means clustering can be another method of observing whether those
domains with high information content also seem to have obvious biochemical similarities.
Further, we have heat-shock and other data, which will allow us to try and observe whether
this mechanism is more used to facilitate continued function under stress rather than purely
biophysical in nature.

neural networks with small sample size
A crucial problem in our implementation is the small sample size for the gold standard data.
Because there are only a few papers that have actually shown synonymous codon mutations
lead to functional changes,17,46 if we are to use only these and a manually curated subset
of the above data, we will inevitably have small set sizes. One method to get around this
is to divide the data into N subsets and then train the network against each subset and use
the other subsets as cross-training. However, the inherent problem with this method, as it has
been proposed by others33, is that it likely will not represent the total parameter space and
that our small set is inherently biased toward either more disordered domains that we have
crystal structures for (from the PDB) or that are more experimentally tractable. It might be
worthwhile to include dirtier data, but as proposed above, adding a conådence factor to the
error function could allow us to make the network more generalizable while also preventing
the less reliable information from throwing off the network. This is feasible, for example, the
protein structure and domain predictions database we initially used contains scores for less
reliable domain classiåcations.4 A metric could be made to convert these into usable input to
the neural network error function.

conclusions
We presented a history of neural networks, from the original work of McCulloch and Pitts to
the backpropagation work of Werbos. This gave us a background needed to present both
a novel model for analyzing hierarchical datasets and then to look in detail at a classical
model of a neural network. Using this as a spring-board, we brieýy looked at some current
implementation of neural networks and used some of these ideas to propose a pipeline for
analysis of domain pausing in S. cer. Although the skeleton code is complete, full cleaning
of the dataset and removal of biases is not and thus our current neural network is biased
toward classifying most domains as non-pausing. While this might be biologically relevant,
it likely points to a population bias in the dataset. We propose to then use the results of
a improved neural net to analyze biochemical parameters using clustering algorithms. The
small sample size problem should be solved by dividing the main dataset into N subsets and

domain pausing and neural networks | bioc218 ånal project| biafra ahanonu | 10

http://www.yeastrc.org/pdr/pages/download.jsp

training the model on these. Thus, should the proposed system work correctly, we will be able
to use this to detect novel domains that utilize pausing and then check to see whether they
can be experimentally disrupted. Should this hold true, we can bring the analysis to human
cells and patient samples to see whether synonymous, otherwise silent mutations in various
populations is actually what is inducing aggregation and identify proteins that might be at
risk for aggregation.

domain pausing and neural networks | bioc218 ånal project| biafra ahanonu | 11

code
Proposed pseudo-code for hierarchical neural networks.

Code 1: hierarchical neural networks in R

Load neural net library
library(nnet)
library(neuralnet)

Load trained neural nets
source("model.training.NN.hierarchical.v1")
trainedNeuralNets = NNtrained()

Load data
source("data.run.NN.hierarchical")
this.data = NNdata()

define the number of loops before an error has occured
error.loop.value = 3

neuralNet <- function(neuralNetFxn, this.loop.input){
this function runs specific level of a hierarchal neural network then

recursively calls the next layer
base case is defined when a parent neural net has no children

run the initial neural net on the input
classifications is a tuple of probabilities for being in given class
list(classifications,subfunctions) := neuralNetFxn(this.loop.input)

set the threshold
threshold = this.loop.threshold.value

get index of next neural net function to be called
subidx = max(find.col(classifications>threshold))

each neural net function outputs a list of functions that can further be
called

subfunctions = [...
fearNN(),
runNN(),
thinkNN(),
...]
#
next.NN.fxn = subfunctions[[subidx]]

base case, if no more children, exit loop, else
recursively call the next neural network
if(next.NN.fxn(children=TRUE)){

return(classifications,next.NN.fxn)

domain pausing and neural networks | bioc218 ånal project| biafra ahanonu | 12

}else if(){
neuralNet(next.NN.fxn,this.loop.input)

}
}

main <- function(inputData,trainedNeuralNets,run.count){
get root neural net by passing no argument to trained neural nets
root.NN = trainedNeuralNets()

Run the neural net hierarchical function until reach end node
list(classification, id.NN) := neuralNet(root.NN,inputData)

Check that we have reached a neural net without children, else call
main() again

if(id.NN(children=TRUE)&run.count<error.loop.value){
main(inputData,trainedNeuralNets,run.count+1)

}else if(){
return(NULL)

}

Let user know choice
print(classification)

Return classification, used later if integrated into system
return(list(classification,id.NN))

}

start the program
main(this.data,trainedNeuralNets,run.count=0)

domain pausing and neural networks | bioc218 ånal project| biafra ahanonu | 13

Figures

Figure 1 | Translation Efåciency Workýow
This diagram shows the primary sources used to gather each type of data used to analyze protein
properties. Protein properties include half-life, mRNA expression level, and others.11

Figure 2 | Early perceptron
Rosenblatt proposed an early system that included feedback to help train and test the perceptron.36

domain pausing and neural networks | bioc218 ånal project| biafra ahanonu | 14

Figure 3 | ADALINE Implementation
Widrow and Hoff developed ADALINE to help predict and ålter binary input, this was later imple-
mented as MADALINE for commerical telephone operation to ålter out noise.42

Figure 4 | Linear associator
Anderson (left) and Kohonen (right) introduced the concept a linear associator.1,18

domain pausing and neural networks | bioc218 ånal project| biafra ahanonu | 15

Figure 5 | Non-linear neuron
Malsburg proposed a non-linear activation function based on the observation that a linear activation
function leads to network instability, which can only be solved by inhibitory inputs.22 An example of
Hopåeld's implementation of the non-linear IO relationship is seen at right.13

Figure 6 | Backpropagation of error
Rumelhart, Hintont, Williams publish their backpropagation of error model. On the right is seen the
application of the net to a family tree.37

domain pausing and neural networks | bioc218 ånal project| biafra ahanonu | 16

Figure 7 | Tiered neural networks
My proposed system to deal with network over-training and dealing with input that has multiple levels
of representation.38

Figure 8 | Multi-layered perceptron and radial basis networks
Examples of neural network topology for classic perceptrons (left) and radial basis function (right)
networks.2

domain pausing and neural networks | bioc218 ånal project| biafra ahanonu | 17

Figure 9 | hierarchical neural network
An implemented hierarchical neural network for prediction of beta-turns.29

domain pausing and neural networks | bioc218 ånal project| biafra ahanonu | 18

Figure 10 | Model of neuron in network
Neuron receives input from previous layer. This is run through propagation, activation, and output
functions and send to the next layer.

domain pausing and neural networks | bioc218 ånal project| biafra ahanonu | 19

Figure 11 | Networks and hubs
It is possible that proteins with domain pausing form different subsets of network hubs and that along
with other properties (hydrophobicity, etc.) help determine whether they need pausing as a back-up
mechanism to ensure they fold properly and thus keep the network functioning.44

domain pausing and neural networks | bioc218 ånal project| biafra ahanonu | 20

Figure 12 | Multi-task neural networks
This paper attempted to identify multiple protein properties at once using an integrated neural network
procedure.34

domain pausing and neural networks | bioc218 ånal project| biafra ahanonu | 21

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
FPR

T
P

R "red"

red

Figure 13 | Initial run ROC
This is the ROC curve running our initial dataset using the procedure outlined above. No homologs
or various other cleaning was done, it will be added in later implementations.

domain pausing and neural networks | bioc218 ånal project| biafra ahanonu | 22

1.53423
−0

.2
21

81

1.
03

73
7

−0
.2

13
68

DomainDiso

0.25471

0.93586
−0

.6
97

26

1.
45

27

DomainLength

−2.97356

0.06487

−0.76821
0.

84
03

9

DomainHydro

0.79931
1.20238

1.80883

−0.18592TEsegment

2.439012.
15

45
6

0.
32

28
7

0.66849

2.34953

2.
68

3

2.63969

0.91801

0.85944

1.61834
0.81653

1.7335

1.37886

1.16113

0.
03

74
3

3.
29

40
3

3.
02

93

0.60562

−1.25646

2.94448
2.34608

1.
18

74
5

3.20005
0.45655
2.20033

2.3708

3.28415

1.
88

48
7

1.26756

2.63883

3.04934

1.94419

significant
0.26235

0.50106

−1.43387

−0.34232

1

0.63836
0.78688

1.38892

1
1.95662

−1.41876
1.75676

1.4328
1.72593

1

2.23312

1

Error: 0.005719 Steps: 24

Figure 14 | Domain pausing neural network
An example neural network of our model implemented in the neuralnet package in R.

domain pausing and neural networks | bioc218 ånal project| biafra ahanonu | 23

0.80 0.85 0.90 0.95 1.000.
00

00
00

00
0

0.
00

00
00

00
3

TEsegment

G
W

Response: significant

−2.0 −1.5 −1.0 −0.5 0.0 0.5−
0.

00
00

00
01

5
−

0.
00

00
00

00
5

DomainHydro

G
W

Response: significant

100 200 300 400 5000.
00

00
00

00
00

0.
00

00
00

00
08

DomainLength

G
W

Response: significant

0.0 0.1 0.2 0.3 0.4 0.5 0.60.
00

00
00

00
0

0.
00

00
00

00
6

DomainDiso

G
W

Response: significant

Figure 15 | Domain pausing neural network generalized weights
The generalized weights show that less disordered and hydrophobic along with shorter domains
helped determine weights in the network.

domain pausing and neural networks | bioc218 ånal project| biafra ahanonu | 24

References
[1] James A Anderson. A simple neural network generating an interactive memory. Mathematical Biosciences,

14(3):197--220, 1972.

[2] Chris M Bishop. Neural networks and their applications. Review of scientiåc instruments, 65(6):1803--
1832, 1994.

[3] JV Chamary, Joanna L Parmley, and Laurence D Hurst. Hearing silence: non-neutral evolution at synony-
mous sites in mammals. Nature Reviews Genetics, 7(2):98--108, 2006.

[4] Kevin Drew, Patrick Winters, Glenn L Butterfoss, Viktors Berstis, Keith Uplinger, Jonathan Armstrong,
Michael Rifýe, Erik Schweighofer, Bill Bovermann, David R Goodlett, et al. The proteome folding project:
Proteome-scale prediction of structure and function. Genome research, 21(11):1981--1994, 2011.

[5] D Allan Drummond and Claus OWilke. Mistranslation-induced protein misfolding as a dominant constraint
on coding-sequence evolution. Cell, 134(2):341--352, 2008.

[6] Daria V Fedyukina and Silvia Cavagnero. Protein folding at the exit tunnel. Annual Review of Biophysics,
40:337--359, 2011.

[7] King Leung Fung and Michael M Gottesman. A synonymous polymorphism in a common mdr1
(abcb1) haplotype shapes protein function. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics,
1794(5):860--871, 2009.

[8] Frauke Günther and Stefan Fritsch. neuralnet: Training of neural networks. The R Journal, 2(1):30--38,
2010.

[9] John C Hay, BEN E LYNCH, and DAVID R SMITH. Mark i perceptron operators'manual. Technical report,
DTIC Document, 1960.

[10] Donald O Hebb. The organization of behavior: A neuropsychological approach. NewYork: John Wiley
& Sons. Hinton, GE (1989). Deterministic Boltzmann learning performs steepest descent in weightspace.
Neural Computation, 1:143--150, 1949.

[11] Christoph J Hengartner and Michael R Green. Dissecting the regulatory circuitry of a eukaryotic genome.
Cell, 95:717--728, 1998.

[12] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief nets.
Neural computation, 18(7):1527--1554, 2006.

[13] John J Hopåeld. Neural networks and physical systems with emergent collective computational abilities.
Proceedings of the national academy of sciences, 79(8):2554--2558, 1982.

[14] Nicholas T Ingolia, Sina Ghaemmaghami, John RS Newman, and Jonathan S Weissman. Genome-wide
analysis in vivo of translation with nucleotide resolution using ribosome proåling. Science, 324(5924):218-
-223, 2009.

[15] Nicholas T Ingolia, Liana F Lareau, and Jonathan S Weissman. Ribosome proåling of mouse embryonic
stem cells reveals the complexity and dynamics of mammalian proteomes. Cell, 2011.

[16] Can Ke�mir, Alexander K Nussbaum, Hansjörg Schild, Vincent Detours, and Søren Brunak. Prediction of
proteasome cleavage motifs by neural networks. Protein engineering, 15(4):287--296, 2002.

[17] Chava Kimchi-Sarfaty, Jung Mi Oh, In-Wha Kim, Zuben E Sauna, Anna Maria Calcagno, Suresh V Ambud-
kar, and Michael M Gottesman. A" silent" polymorphism in the mdr1 gene changes substrate speciåcity.
Science, 315(5811):525--528, 2007.

[18] Teuvo Kohonen. Correlation matrix memories. Computers, IEEE Transactions on, 100(4):353--359, 1972.

[19] David Kriesel. A brief introduction to neural networks. Retrieved August, 15:2011, 2007.

| biafra ahanonu | 25

[20] Stanford University. Stanford Electronics Laboratories, B. Widrow, E. Hoff, United States. Ofåce
of Naval Research, United States. Army Signal Corps, United States. Air Force, and United States. Navy.
Adaptive switching circuits. 1960.

[21] Claus Lundegaard, Ole Lund, and Morten Nielsen. Prediction of epitopes using neural network based
methods. Journal of immunological methods, 2010.

[22] Chr Malsburg. Self-organization of orientation sensitive cells in the striate cortex. Biological Cybernetics,
14(2):85--100, 1973.

[23] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity. Bulletin
of mathematical biology, 5(4):115--133, 1943.

[24] Catriona A McLean, Robert A Cherny, Fiona W Fraser, Stephanie J Fuller, Margaret J Smith, Konrad
Vbeyreuther, Ashley I Bush, and Colin L Masters. Soluble pool of aβ amyloid as a determinant of severity
of neurodegeneration in alzheimer's disease. Annals of neurology, 46(6):860--866, 2001.

[25] Marvin Minsky and Seymour Papert. Perceptron (expanded edition), 1969.

[26] Manuela Neumann, Deepak M Sampathu, Linda K Kwong, Adam C Truax, Matthew CMicsenyi, Thomas T
Chou, Jennifer Bruce, Theresa Schuck, Murray Grossman, Christopher M Clark, et al. Ubiquitinated tdp-43
in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 314(5796):130--133,
2006.

[27] Gaurang Panchal, Amit Ganatra, YP Kosta, and Devyani Panchal. Searching most efåcient neural network
architecture using akaike's information criterion (aic). International Journal of Computer Applications IJCA,
1(5):54--57, 2010.

[28] Sebastian Pechmann and Judith Frydman. Evolutionary conservation of codon optimality reveals hidden
signatures of cotranslational folding. Nature structural & molecular biology, 2012.

[29] Bent Petersen, Claus Lundegaard, and Thomas Nordahl Petersen. Netturnp--neural network prediction
of beta-turns by use of evolutionary information and predicted protein sequence features. PloS one,
5(11):e15079, 2010.

[30] Walter Pitts and Warren S McCulloch. How we know universals the perception of auditory and visual
forms. Bulletin of Mathematical Biology, 9(3):127--147, 1947.

[31] Mihael H Polymeropoulos, Christian Lavedan, Elisabeth Leroy, Susan E Ide, Anindya Dehejia, Amalia
Dutra, Brian Pike, Holly Root, Jeffrey Rubenstein, Rebecca Boyer, et al. Mutation in the α-synuclein gene
identiåed in families with parkinson's disease. Science, 276(5321):2045--2047, 1997.

[32] Dariusz Przybylski and Burkhard Rost. Predicting simpliåed features of protein structure, 2007.

[33] Marco Punta and Burkhard Rost. Neural networks predict protein structure and function. Methods Mol
Biol, 458:203--30, 2008.

[34] Yanjun Qi, Merja Oja, Jason Weston, and William Stafford Noble. A uniåed multitask architecture for
predicting local protein properties. PloS one, 7(3):e32235, 2012.

[35] Brian Randell, Pete Lee, and Philip C. Treleaven. Reliability issues in computing system design. ACM
Computing Surveys (CSUR), 10(2):123--165, 1978.

[36] Frank Rosenblatt. Perceptron simulation experiments. Proceedings of the IRE, 48(3):301--309, 1960.

[37] David E Rumelhart, Geoffrey E Hintont, and Ronald J Williams. Learning representations by back-
propagating errors. Nature, 323(6088):533--536, 1986.

[38] D. Sadava, H.C. Heller, D.M. Hillis, and M. Berenbaum. Life: The Science of Biology. W. H. Freeman,
2009.

| biafra ahanonu | 26

[39] Daniel M Skovronsky, Virginia M-Y Lee, and John Q Trojanowski. Neurodegenerative diseases: new
concepts of pathogenesis and their therapeutic implications. Annu. Rev. Pathol. Mech. Dis., 1:151--170,
2006.

[40] Adi L Tarca, Vincent J Carey, Xue-wen Chen, Roberto Romero, and Sorin Dr�ghici. Machine learning and
its applications to biology. PLoS computational biology, 3(6):e116, 2007.

[41] Paul Werbos. Beyond regression: New tools for prediction and analysis in the behavioral sciences. 1974.

[42] Ron Winter and Bernard Widrow. Madaline rule ii: a training algorithm for neural networks. In Neural
Networks, 1988., IEEE International Conference on, pages 401--408. IEEE, 1988.

[43] Ziheng Yang and Rasmus Nielsen. Mutation-selection models of codon substitution and their use to estimate
selective strengths on codon usage. Molecular biology and evolution, 25(3):568--579, 2008.

[44] Haiyuan Yu, Philip M Kim, Emmett Sprecher, Valery Trifonov, and Mark Gerstein. The importance of bottle-
necks in protein networks: correlation with gene essentiality and expression dynamics. PLoS computational
biology, 3(4):e59, 2007.

[45] Diana Zala, Maria-Victoria Hinckelmann, Hua Yu, Marcel Menezes Lyra da Cunha, Géraldine Liot, Fab-
rice P Cordelières, Sergio Marco, and Frédéric Saudou. Vesicular glycolysis provides on-board energy
for fast axonal transport. Cell, 152(3):479--491, 2013.

[46] Fangliang Zhang, Sougata Saha, Svetlana A Shabalina, and Anna Kashina. Differential arginyla-
tion of actin isoforms is regulated by coding sequence-dependent degradation. Science Signalling,
329(5998):1534, 2010.

[47] Zhiqiang Zheng andMarc I Diamond. Huntington disease and the huntingtin protein. Progress in Molecular
Biology and Translational Science, 107:189, 2012.

References| biafra ahanonu | 27

Index
abstract, 1
actin, 9
activation functions, 4
adaptive resonance theory, 3
Akaike information criterion, 4
artiåcial intelligence, 2

backpropagation, 10
backpropagation of error, 3

Chris Malsburg, 3
classic neural networks, 4
co-translational folding, 1
code, 12
conclusions, 10
conådence vector, 7
current implementations, 6

delta rule, 2
domain pausing, 10
Donald Hebb, 2

error backpropagation, 3, 5
extracting biochemical parameters, 10

Figures, 14

Gail Carpenter, 3
generalizable classiåer, 9
gradient descent, 2, 5

Hebbian rule, 2
hierarchical neural networks, 3, 4
history, 2
Hopåeld networks, 3
hyperbolic tangent, 4

introduction, 1

James Anderson, 3
John Hopåeld, 3

K-means, 6

linear associator, 3
logistic function, 4

Marvin Minsky, 2
maximum likelihood, 6
multilayered perceptron, 4, 6

neural networks, 2
neural networks and domain pausing, 7
neural networks with small sample size, 10
non-linear model, 3

output function, 5
overåtting, 4

Paul Werbos, 3
perceptron, 2
principal component analysis, 10
propagation function, 4

radial basis function, 4

sequence unique, 9
Seymour Papert, 2
step function, 4
Stephen Grossberg, 3

Teuvo Kohnen, 3

unsupervised learning, 9

Walter Pitts, 2
Warren McCulloch, 2

Index| biafra ahanonu | 28

	predicting co-translational pausing with neural networks
	abstract
	introduction
	history
	hierarchical neural networks
	classic neural networks
	current implementations
	neural networks and domain pausing
	extracting biochemical parameters
	neural networks with small sample size
	conclusions
	code
	Figures

	References
	Index

